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Summary 

Approximate methods for the computation of propagation of plane waves 

through a nonuniform dielectric slab, scattering by a nonuniform dielectric 

cylinder, and a conducting cylinder surrounded by a nonuniform dielectric 

are considered. The differential equations involved can be solved by 

Taylor's method, by the method of collocation, and by the method of least 

squares for t h i s  purpose. The dielectric slab of  exponentially varying 

permittivity i s  being treated by both the rigorous and the approximate methods. 

The results of the approximate method are being compared with the rigorous 

solutions for obtaining an indication of the accuracy of the approximations. 



Introduction 

The scattering of plane waves traveling in nonuniform media is of current 

interest. The problem can be dealt with by solving the wave equation derived 
from Maxwell's equations. The WKB method 1 , Born Approximation,'' and 

4 
partial wave method have been applied to solve this problem. However, each 

one of these methods has its limitations of practicality for specific values of the 

parameters. Either the permittivity has a small gradient or the far field is being 

considered only. 

In this report, attempts have been made to obtain a solution for the 

propagation of plane waves through a nonuniform dielectric slab and waves 

scattered by a dielectric cylinder and a conducting cylinder surrounded by a 

dielectric without any limitation. 

collocation are  adopted to solve the problem. The first method is simpler but 

only good for low frequency propagation through an infinite dielectric slab. 

The second method is applicable to  both cases, however, i t  is more complicated. 

The normal scattering by a n  infinite slab of exponentially varying permittivity 

is considered as a n  example to demonstrate the accuracy of Taylor's and the 

collocation me thod .  

The Taylor method and the method of 
5 

Formulation 

Throughout this report, only t ime  harmonic varying fields are  being considered 

with the t i m e  dependence exp(iwt). Al l  media are  assumed to be linear, isotropic 

and lossless with a uniform permeability p = p . The permittivity E is a regular 

function only of one dependent variable. The variation of the permittivity is 

confined to a finite region in the varying coordinate. The scattering of a plane 

wave by an infinite dielectric slab and a n  infinite dielectric cylinder will be 

considered separately. 

0 

I. Propagation of a Plane Wave Through an Infinite Dielectric Slab 

Consider the oblique incidence of a plane wave on a plane dielectric slab 

as shown in Figure 1. The perpendicular polarization means that the electric 

field intensity vector is perpendicular to the plane of incidence [see Fig. 1 (a) 1 . 
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If the electric field intensity vector i s  parallel to the plane of incidence as 

indicated in Figure 1 (b), the wave i s  said to have pomllel polarization. Suppose 

that the normalized incident fields for the perpendicular polarization and the 

parallel polarization are given by 

Ei = exp. (jkxx+ jkzz), 
1Y 

H' = exp. (jk x +  jkzz) 2Y X 

respectively. The subscript 1 i s  used to indicate that the quantities are related 

to the perpendicular polarization; the parallel polarization i s  indicated by the 

subscript 2. The propagation constants in the x- and z- directions are 

K = K   COS^ , x o  

K = K sina , 
2 0 

2 2 
where K = o u e and the angle a i s  the angle of incidence. The total 

0 0 0  

fields i n  Regions I and Ill (see Fig. 1) can be written as 

E' = exp. (jk x +  jk z)+ R1 exp. (-jk x +  jkzz), 1Y X 2 X 

I I  = T1 exp. (ikxx + jkzz), 
1Y 

HI = [exp. (jkxx + jk2z) - R2 exp. (-jkxx + jkzz) 1 Zo 8 2Y 

"1 = (T2 /Zo) exp. (jkxx + jkzz) , 
2Y 

1 
where the wave impedence i s  Z = ( po/eo) 5 , the parameters T and R are the 

transmission and the reflection coefficients respectively. From Maxwell's equations, 

the electric field intensity inside the dielectric slab of the perpendicular 

0 
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polarization may be represented by 

where the constants A and B are determined by the boundary conditions, and the 

functions F and G are two linearly independent particular solutions of the 1 1 
following differential equation: 

The derivatives of the function with respect to the argument are denoted by 

"primes". The relative permittivity, r i s  a function of x only. The 

corresponding magnetic field intensity of pamllel polarization i s  given by 
r 

where the functions F and G are linearly independent and satisfy the 2 2 
differential equation: 

2 2 
qj" (x) - E' (x)/ 6 (x) I $' (x) + ko [ f r  (x) - sin a I + (x) = 0.  (2) r r 

If the functions F1, G1, F2 and G can be obtained by any mean from Eqs. (1) 

and (2) respectively, a l l  other field components of both cases and i n  a l l  three 

regions can be derived fmm Maxwell's equations accordingly. The main 

interests of  the present problem are the transmission coefficient T and the 

reflection coefficient R. The conventional method can be used to evaluate 

these two quantities in a straightforward manner as follows. Equating the 

tangential field components at two slab surfaces, i.e. at x = 0,  and a, yields 

four linear inhomogeneous algebraic equations of four unknowns T, R, A, and B 
for both cases. By solving these four equations, the transmission and reflection 

2 
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coefficients for both polarizations are given by 

T1 = (2j'k x 1  D ) IF; (o)G1(o) - F1(o)G; (0) 1 exp (jkxa), (3) 

-1  R1 = D {F1(0) G1(a) - F1(a) G1(o) - k-* X iF;(o) G;(a) - F'l(a) G',(o) 1 

+ (F; (a) G2(0) - F2(0) G; (a) ) / E  r (a)]} exp (2jk X a) . (6) 

where 

D1 = F1(o) Gl (a) - F1(a) Gl(o)+ k-2 X [F;(o) G;(a) - F;(a) G; (0) 1 

D2 = F2(0) G2(a) - F2(a) G2(o) + 1 k x r  E (0) E r (a) 1 [F;(o) G; (a) -F;(a) G;(o) 1 

+ jk" X 

+ [ F; (a) G2(0) - F2(0) G; (a) 1 / e  r (a) 1 . 

[ F;(o) G2(a) - F2(a) G; (0) I/e r (0) 
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In the event of an infinite perfectly conducting plane located at x = 0, 

no wave can be transmitted into region 111, i.e., T1 = T = 0. Furthermore, 
2 

A2 F; (0) + B2G>(o)= 0.  

Under these boundary conditions, the reflection coefficients are obtained as 

fol lows: 

R 1  = [ (-Sll + iS"l)/(S'l + is'',) I exp. (2jk X a), 

R2 = (S; - (S; + is",) I exp (2jkxa), 

where 

SI', = k X [F1(a) G1(o) - Gl(a) F1(0) , 

S" = k e (a) F2(a) G2(0) - F2(o) G2(a) 1 . x r  2 

With the knowledge of the transmission and the reflection coefficients, the wave 

propagation i n  Regions I and 111 are completely specified. The remaining problem 

i s  how to obt i in the general solutions of the two linear homogeneous differential 

equations [Eqs. (1) and (2) 1 within the region 0 < - x < - a. 

I I .  Scattering of a Plane Wave by a Nonuniform Dielectric Cylinder 

The geometry under consideration i s  a dielectric cylinder of  radius a whose 
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axis i s  colinear with the z-axis of the cylindrical coordinate system as shown i n  

Fig. 2. The relative permittivity of the dielectric i s  a function of radius only, 

i .e. , i t  may be expressed by a (p), where p i s  the radial coordinate. Again, 

two cases w i l l  be considered, namely, the perpendicular polarization and the 

parallel polarization. The z-component o f  the incident fields in both cases are 

given by 

r 

E'2z = cos a exp. (jk x + jkzz) , 
X 

where the propagation constants, k and k 
given as before. The angle, a , i s  the angle of  incidence. Using the well 

known wave transformation, the factor, exp (jk x) can be expressed i n  terms of 

Bessel functions of the first kind and the cosine functions of the angular coordinate, 

8. That i s  

and the wave impedance, Z , are 
X Zf  0 

X 

where x = p cos , the argument i s  

E = p k  cos a .  
X 

Since the cylinder i s  assumed to have infinite length and the permittivity i s  

uniform i n  the z-direction, the resultant fields must be periodic in the z-direction 

and varying according to the factor exp (jk z). The total fields (incident plus 

scattering) i n  air may be written as 
Z 

+ 2 n=l 1 ?Jn( E) + a n n  H(2) ( $1 COS n 01 exp. (jk Z z), 

= (cosa) exp. (jk z) { J  ( e )  + bo H g )  ( 6 )  .' E2z 2 0 
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+ 2  n= 1 1 [ i n J n ( E ) + b n H F )  (91 c o s n e ) ,  

th 
where the function, H(2)is the n 

The constants, a and b are determined by the boundary conditions. The 

corresponding fields inside the dielectric cylinder are given by 

order Hankel function of the second kind. 
n 

n n 

= exp. (jkzz) 1 dn 7 (p) cos n e  , d 
E2z n=o 

- 
where the functions ')k 
following differential equations respectively: 

and Tn are the regular particular solutions of the n 

2 
where W ( p) = E (p) - sin 

magnetic or the electric intensity, the 8 -component of the corresponding 

electric or magnetic field can be obtained by 

a . With the knowledge o f  the z-component of  the 
r 

2 a E l z  
F- = [ - i u e / k  W (p ) I  H2 0 

respectively. The scattering amplitudes, a and b are evaluated by equating the 

tangential components at the surface of the cylinder and putting the terms of the 

same angular dependent equal to zero. The two algebraic equations for the 

scattering amplitudes a and c for perpendicular polarization, b and d for 

n n 

n n n n 
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parallel polarization, can then be solved for each n. They are 

= ak cos a . The solution wi l l  be complete i f  the functions, 

and Tn are known. For the case of a conducting cylinder of  radius b 

60 0 
where 

3% 
coated by a nonuniform dielectric up to radius a, Eqs. (1 1) and (12) are 

applicable except that the function 

Eqs. (9) and (10) respectively. An additional boundary condition for the 

perpendicular polarization i s  ' (b) = 0 ; the corresponding boundary 
n 

condition for the parallel polarization i s  (b) = 0. 

and (p are the general solutions of n n 

L 

n 
It should be noted that for arbitrarily polarized waves, the incident field 

can be resolved into two waves, one polarized i n  the perpendicular direction, 

and the other with parallel polarization. The resultant fields are given by the 

sum o f  these two solutions. 

Solutions of the Differential Equations 

As shown above, the scattering of plane waves by a plane or a cylindrical 

object can be calculated i f  the particular solutions of the differential Equations 

(l), (2), (9), and (10) can be found. Since the nature of the solutions of  the 

plane case are quite different from those of the cylindrical case, the two cases 

wi l l  be treated separately. We begin with the plane case. 

I .  Solutions for the Differential Equation of a Slab 

It i s  obvious that Eqs. (1) and (2) are of the same type and can be represented 
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U" (x) "t p (x) U' (x) + q(x) u (x) = 0 (13) 

where p (x) and q (x) are regular functions within the region under consideration, 

i .e., p (x) and q (x) have no singular point within the region 0 < x < a. By 

Taylor's method, the general solution of Eq. (13) may be written as 
- - 

U"(0) 2 U"'(0) 3 u (x) = u (0) c U'(0) x + - x +'T x + .... . (14) 2 

i f  the series i s  convergent in 0 < x 

solution of Eq. (13), it i s  suggested that 

< a. To assure that Eq. (14) i s  the general - - 

U (0) = A, U' (0) = B, (15) 

Since Eq. (14) satisfies Eq. (13), the second derivative of the function U' 

evaluated at x = Ocan be obtained by substituting Eq. (15) into (13). That i s  

U" (0) = - q (0) A - p (0) B 

The higher order terms are obtained by taking the derivative with respect to x of  

Eq. (13) a certain number of  times. 

yields 

For example, taking the derivative once 

2 U'"(O) = - [ p  (0) q (0) + q' (0)I A + [ p  (0) + q (0) - ~ ' ( 0 )  I B . 
lv 

In  t h i s  way, the higher order terms U 

Substituting a l l  of these into Eq. (14) yields the general solution for Eq. (13) of 

the following form 

(0), Uv(0), can be calculated accordingly. 

U(x) = A  I A  xn + B I B  xn n n 

'S  

n n 
with known values of A and B Is .  The convergence of the series depends on 

the width of the slab and the operating frequency. Usually, i t  i s  useful only at 
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low frequency and for a narmw slab. For higher frequencies and wide slab, the 

method of  collocation which i s  discussed i n  the following consideration seems to 

be more practical. 

Suppose that U and U are two linearly independent particular solutions of  1 2 
Eq. (13). It i s  well known that any function can be expressed by an even and an 

odd functions. Thus, let 

"1 = ' l e +  'lo 

where the subscripts e and o indicate that the function i s  even or odd. It i s  

easy to show that the two functions U le+ U2e and Ulo+ U20 are two linearly 

independent solutions of  Eq. (13). Additionally, any regular function within a 

finite region can be expressed with validity i n  this region by a Fourier series. 

Hence, the two linearly independent particular solutions of Eq. (13) can be 

written as 

U,(X) = Ule+ UZe= 1 A COS L1 x , n n 

= Z B sin L 2 n ~ ,  lo + n 
UO(X) = u 

where Lln = n ./.,a, L 
valid within 0 < x <  a. The dimensionless quantity v and v to be 

determined by the differential equation, are two real numbers greater than or 

equal to unity. They are equal i f  the summations of  these two series are summing 

the index n from zem to infinity. However, if, as an approximation, the series 

have finite numbers of terms, v and v may have different values. Let 1 2 

= n*/v2a . Two functions U (x) and U (x) are 
2n e 0 

1 2' - -  

N 
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M 
Uo(x)= t B s i n  L2m~,  m = o m  

R 

where n, m are integers. Substituting Eqs. (16) into Eq. (13) separately yields 

1 sin L2m x + p (x) L2, cos Lgm x I B = 0. (1%) 
2 M 

Wl  m {[ q(x) - L 2m 

Obviously, i f  Eqs. (16) are two particular solutions of (13), Eqs. (17) have to be 

satisfied at a l l  points of  the region 0 < x < a (there i s  no objection i f  Eqs. (17) 

are also satisfied at x > a). But, for the purpose of approximation, the method of  

collocation requires the equality to be fulfil led only at  N + 1 points for Eq. (17a) 

and M points for Eq. (17b). In the following only Eq. (1%) wi l l  be considered. 

Suppose that Eq. (17b) i s  satisfied at M points, namely, 0 < x1 < x < x . ..< x < a. 

There are many choices of the points. Usually, i t  i s  convenient to choose equal 

space between the points. For each point, Eq.  (17b) i s  an algebraic equation o f  

M unknowns, B . That i s  

- -  
5 

- - 2 - 3  - m -  

m 

I sin L2m xi + p (xi) Lgm xi} Bm = 0, (18) 
2 M 

1 Is(..) - L2m m=l I 

where i = 1, 2, 3, . . . , M. In order to have nontrivial solutions for the B Is, 

the determinant formed from the coefficients which depends on the value of v2 

must be zero. By t h i s  condition, the value of v i s  then determined. With the 

knowledge of v 

system of M-1 equations i n  terms of a B 

are many roots from the determinant of v 

the suitable value i s  the smallest root which i s  greater than or equal to unity. 

m 

2 
the expansion coefficients B can be calculated from the 

which i s  largest among the B 's. There 

Taking the convergence into account, 

2' m 

r ' m 

2' 
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Similar procedures lead to solutions of v and the corresponding expansion 

coefficients, A of Eq. (17a). Note that i f  p (x) = 0, v2 = 1 is always a mot 

of the determinant. But it is not necessarily a suitable value. 

1 

n 

5 It should be mentioned that the method of least squares is applicable to 

this case too. Multiplying Eq. (17a) by cos Llrx, and Eq. (1%) by sin L2~x 

and integrating from 0 to a with respect to x yields 

2 
cos L 1  x { [q(x) - L 1 cos L x - p (x) L l n  sin L x 1 dx = 0, (19a) F A T  n = o n  0 r I n  I n  

2 M 

m=l m 2m 2m 
sin L2sx { [q(x ) - L2m1 sin L x + p (x ) L 2 m ~ ~ ~  L x )dx  =O. (1%) 

The integrals in Eqs. (19) can be approximated by a weighted sum of the relevant 

ordinates at k points. That is 

where r = 0, 1, 2, 3, . . . N, s = 1,  2, 3, . . . M; and x. = ia/k According to 

the Trapezoidal rule, the weighing coefficients, D. are given by 
I 

6 
I 

6 
According to Simpson's one-third rule, they may be written as 

Other rules can be used as well. Eqs. (20) again, are systems of linear, homogeneous 

algebraic equations which can be exploded to find the suitable values for v 1' v2' 
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A I s  and B 's. The solutions of the method of  collocation wi l l  be different with 
n m 

a different choice of the points where Eqs. (17) are satisfied. This phenomena 

does not exist i n  the method of least squares which i s  considerably more accumte, 

but also more complicated. 

By means of a high speed electronic computer, i t i s  easy to evaluate a 

determinant or to solve a system of linear algebraic equations. The methods of 

cs!!omtion and of  least squares are hence practical to calculate the transmission 

and reflection coefficients. 

1 1 .  Solutions for the Cylindrical Problem 

Observe that the differential equations o f  both perpendicular and parallel 

polarizations are of the same form. That i s  
r )  
L 1 n 

P 
V" (P)+ [ - + P ( P ) l  v ~ ( p ) + [ q ( p ) - T l v n ( p ) = o  

n P 

where p (p) and q (p), again, are regular functions of p within the region 

O L p L a .  I f  p (p )  4 0 , Taylor's method i s  not applicable to Eq. (21). 

Hence, only the methods of collocation and of  the least squares are practical. 

They are considered in  the bllowing section. 

In order to fulf i l l  the requirement that a l l  fields are finite at p = 0, the 

function V ( p) of Eq. (21) can be expressed as 
n 

th 
where order Bessel function of  the 

f i r s t  kind. The dimensionless parameter, u, to be determined by the differential 

equation, i s  a real number which i s  greater than or equal to unity. To consider 

an approximate solution, the summation of m in  Eq. (22) may be taken from 

1 to M such that Eq. (22) can be a good approximation. Substitute Eq. (22) into 

(21) and notice that the relationship 

5 = p /ua, J (anm) = 0 , and J i s  the n 
n n 

2 
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yields 

Note that Eq. (23) i s  similar to Eq. (1%). The differences are that the trigonometric 

functions are replaced by the Bessel functions and m n  i s  replaced by a . Evidently, 

the iiiethd of collocation aid  the m e t h d  cf lecst qu=rer are app!icclb!e to the 

present problem. The same procedures can be used to determine the suitable value 

of u and the expansion coefficients, C 

replaced by Jn, cos by JIn , m n  by anm , and B i n  Eqs. (16b), (la), 

(18), (19b) and (2Ob), then a l l  these equations and the associated statements are 

valid for the solution of Eq. (21). 

nm 

. In other words, i f  a l l  the sin are nm 
by C m nm 

For the case ofa conducting cylinder of radius b coated by a nonuniform 

dielectric up to radius a, a l l  C J nm n 
i n  Eqs. (22) - (23) are replaced by 

C J + D N , and C J' b y C  J' + D N' , where the fvnction N i s  nm n n m r l  nm n nm n nm n n 
th 

the n 

constants D 

order Bessel function of the second kind. From the boundary conditions, the 

for perpendicular polarization i s  given by 
nrn 

where 'p = b'ua. For parallel polarization, i t  i s  

The same method for finding the parameter u and the expansion coefficients, 

C i s  the same as discussed previously. 
nm' 

Examples 

The accuracy of the approximate methods discussed previously can be 

demonstrated by comparison with the rigorous solution. This can be done by 
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considering a lossless slab of exponentially varying permittivity, i.e. 

- d a  er (x) = E e r 

where e is a constant, and a i s  the width of the slab. The rigorous solution 

of the electric field intensity in the dielectric slab for the normal incident fields 

(a = 0) i s  given by 

r 

where the argument i s  

‘1 = 2 k r a e  -x/2a 
I 

k 2 = k  2 E 
r o r ,  

and the functions J and N are the zero order Bessel functions of the f i rs t  

and secand kind respectively. The solution of Taylor’s method calculated up 

to the six power of  x i s  given by 

0 0 

-2 4 2 k2 3 k 2  
r r x  

+T a - + r h r - - a  ) x  
T kr 2 E = A i l - -  
Y 2! 

k r -2 2 x  krL x 6 ( 1 1 k 2 a - 2 - a 4 - k 4 ) 1  
5 !  a 6 !  r r 

+- (a - 4 k r )  - +  

5 2  - 3a-2) 
2 x  2k2  4 

T 7 + kr 

2 
k r  3 r x  s (kr + @/a)! x -T x + 

-4 2 6 
r (4a - 6 k r ) x / a  1 . 

k2 

+T 
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dE 
with E = A, 2 = B/a at x = 0. Observe that t h i s  method i s  valid only Y dx 
when k < 1. Using four points (x = 0, a/3, 2a13, and a for the even function; 

x = a/4, a/2, h/4,  and a for the odd fvnction) in the method of collocation for 

k = a/a yields 

r -  

r 

E' = A [sin L2 x + 0.082 s i n  2L2 x + 0.00631 sin 3L2 x 
Y 

+ 0.001919 s i n  4L2 x 1 

+ B [ - 0.2323 + COS L,x + 0.0693 COS 2L1x + 0.0212 COS 3L1x 

+ 0.0076 cos 4L1x 1 

where L, = 

trigometric functions in the expansion the value of L i s  different from that of L2. 

s/l.307a, L2 = r/1.376 . Because of only finite number of 

1 
Table 1 l is ts  the reflection coefficients calculated by Taylor's method and 

compared with the rigorous solutions at different frequencies for the case where 

an infinite conducting plane i s  located a t  x = 0. For the same geometry, the 

reflection coefficients calculated by the method of collocation with two and 

four points matching at k = r /a  are tabulated i n  Table 2. The convergence 

i s  tremendously good in this case. The error of  the method of collocation by 

matching at two points i s  within 4% in comparison with the rigorous solution. 

For the case without the conducting plane, the transmission and the 

reflection coefficients calculated by Taylor's method are tabulated in Table 3 

and compared with the rigorous values, The opemting frequency i s  chosen at 

k = r /a  and =4 .  

r 

r 



. 

T/& r/7a r/& II /Sa 

Taylor's -0.405 -0.4654 -0 * 5508 -0.6723 
Method 

Exact 4 -0.4096 -0.4645 -0.5466 -0.6503 

-18- 

* 

Table 1 - Comparison of the reflection coefficients R calculated 
by Taylor's Method with the rigorous solution, where 

M 2 4 Exact 

Y 1.4483 1.4012 1.3964 - 

R = - / 2  tan -' y exp (2jkoa) 

Table 2 - Comparison of the reflection coefficients R calculated 
by the method of collocation with the rigorous solution, 
where 

R =/2 tan-' Y exp (2ikoa) 

M represents the number of terms in the collocation method. 



. 

Taylor's Method 

Exact 

-1 9- 

T exp (- ikoa) R exp (-2 jk a) 
0 

0.9910 1- 19'43' 0.1460 /112O 12' 

0.9895 1-  19'23' 0.1357 1 112O 6' 

Table 3 - Comparison of the transmission and refiection coefficients 
calculated by Taylor's Method with the rigorous values 

T exp (- jk a) 
0 

R exp (-2 jk a) 
0 

Table - 4 Comparison of the transmission and reflection coefficients 
calculated by the method of collocation and the exact values 

Exact 0.9209 /220° 23' 0.3795 /-07O 51' 

r 

Method of I collocation 
1 0.9161 /220°5' 0.3802 1-96' 40' 
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Conclusion 

Taylor's method, method of collocation, and method of least squares are 

shown applicable to the propagation of  plane waves through nonuniform regions. 

Taylor's method i s  simple but limited to low frequency propagation. The method 

of  collocation and method of least squares are practical a t  high frequencies. 

High speed electronic computers make the calculation possible at high accuracy. 
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Figure 1 - (a) Perpendicular polarization. 
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Figure 2 - Scattering of a plane wave by a cylindrical 
nonuniform dielectric material. 


